Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 122(43): 9938-9946, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30299964

RESUMO

It is known that glycyrrhizic acid (GA) promotes the enhancement of the activity of several medicines. This is attributed to the fact that GA increases the membrane permeability of small drug molecules. There is an opinion that GA facilitates the formation of additional large voids in the membrane, which enhance the passive diffusion of molecules across the membrane. In this work, we investigate how GA influences the intermolecular voids using the molecular dynamics simulation. We calculate the interstitial spheres (empty spheres inscribed between molecules) in model DPPC and DOPC bilayers, both pure and with the addition of cholesterol. It was observed that the addition of GA does not lead to the formation of new large interstitial spheres; i.e., new large voids do not appear. The distribution of empty volume inside the bilayers is also studied. We calculated the profiles of the empty volume fraction both from the middle plane of the bilayer and from its outer surface (from the lipid-water interface). This analysis has shown that the addition of GA does not cause the increase of the empty volume in the bilayer; moreover, there is a slight decrease in the bilayers with cholesterol. Thus, we have not found a confirmation of the simplest hypothesis that individual GA molecules induce pores in the membrane.


Assuntos
Ácido Glicirrízico/química , Bicamadas Lipídicas/química , 1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Ácido Glicirrízico/metabolismo , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química
2.
J Phys Chem B ; 121(13): 2814-2824, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28282987

RESUMO

The effect of four general anesthetics, namely chloroform, halothane, diethyl ether, and enflurane on the free volume fraction and lateral pressure profiles in a fully hydrated dipalmitoylphosphatidylcholime (DPPC) membrane is investigated by means of computer simulation. In order to find changes that can be related to the molecular mechanism of anesthesia as well as its pressure reversal, the simulations are performed both at atmospheric and high (1000 bar) pressures. The obtained results show that the additional free volume occurring in the membrane is localized around the anesthetic molecules themselves. Correspondingly, the fraction of the free volume is increased in the outer of the two membrane regions (i.e., at the outer edge of the hydrocarbon phase) where anesthetic molecules prefer to stay in every case. As a consequence, the presence of anesthetics decreases the lateral pressure in the nearby region of the lipid chain ester groups, in which the anesthetic molecules themselves do not penetrate. Both of these changes, occurring upon introducing anesthetics in the membrane, are clearly reverted by the increase of the global pressure. These findings are in accordance both with the more than 60 years old "critical volume hypothesis" of Mullins, and with the more recent "lateral pressure hypothesis" of Cantor. Our results suggest that if anesthesia is indeed caused by conformational changes of certain membrane-bound proteins, induced by changes in the lateral pressure profile, as proposed by Cantor, the relevant conformational changes are expected to occur in the membrane region where the ester groups are located.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Anestésicos/química , Clorofórmio/química , Enflurano/química , Éter/química , Halotano/química , Simulação de Dinâmica Molecular , Pressão
3.
Phys Chem Chem Phys ; 19(9): 6345-6357, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28116386

RESUMO

We performed all-atom MD simulations of the protein SNase in aqueous solution and in the presence of two major osmolytes, trimethylamine-N-oxide (TMAO) and urea, as cosolvents at various concentrations and compositions and at different pressures and temperatures. The distributions of the cosolvent molecules and their orientation in the surroundings of the protein were analyzed in great detail. The distribution of urea is largely conserved near the protein. It varies little with pressure and temperature, and does practically not depend on the addition of TMAO. The slight decrease with temperature of the number of urea molecules that are in contact with the SNase molecule is consistent with the view that the interaction of the protein with urea is mainly of enthalpic nature. Most of the TMAO molecules tend to be oriented to the protein by its methyl groups, a small amount of these molecules contact the protein by its oxygen, forming hydrogen bonds with the protein, only. Unlike urea, the fraction of TMAO in the hydration shell of SNase slightly increases with temperature (a signature of a prevailing hydrophobic interaction between TMAO and SNase), and decreases significantly upon the addition of urea. This behavior reflects the diverse nature of the interaction of the two osmolytes with the protein. Using the Voronoi volume of the atoms of the solvent molecules (water, urea, TMAO), we compared the fraction of the volume occupied by a given type of solvent molecule in the hydration shell and in the bulk solvent. The volume fraction of urea in the hydration shell is more than two times larger than in the bulk, whereas the volume fraction of TMAO in the hydration shell is only slightly larger in the binary solvent (TMAO + water) and becomes even less than in the bulk in the ternary solvent (TMAO + water + urea). Thus, TMAO tends to be excluded from the hydration shell of the protein. The behavior of the two cosolvents in the vicinity of the protein does not change much with pressure (from 1 to 5000 bar) and temperature (from 280 to 330 K). This is also in line with the conception of the "osmophobic effect" of TMAO to protect proteins from denaturation also at harsh environmental conditions. We also calculated the volumetric parameters of SNase and found that the cosolvents have a small but significant effect on the apparent volume and its contributions, i.e. the intrinsic, molecular and thermal volumes.


Assuntos
Metilaminas/química , Nuclease do Micrococo/química , Ureia/química , Água/química , Nuclease do Micrococo/metabolismo , Simulação de Dinâmica Molecular , Solventes/química , Temperatura
4.
Phys Chem Chem Phys ; 17(13): 8499-508, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25685984

RESUMO

Understanding the physical basis of the structure, stability and function of proteins in solution, including extreme environmental conditions, requires knowledge of their temperature and pressure dependent volumetric properties. One physical-chemical property of proteins that is still little understood is their partial molar volume and its dependence on temperature and pressure. We used molecular dynamics simulations of aqueous solutions of a typical monomeric folded protein, staphylococcal nuclease (SNase), to study and analyze the pressure dependence of the apparent volume, Vapp, and its components by the Voronoi-Delaunay method. We show that the strong decrease of Vapp with pressure (ßT = 0.95 × 10(-5) bar(-1), in very good agreement with the experimental value) is essentially due to the compression of the molecular volume, VM, ultimately, of its internal voids, V. Changes of the intrinsic volume (defined as the Voronoi volume of the molecule), the contribution of the solvent to the apparent volume, and of the contribution of the boundary voids between the protein and the solvent have also been studied and quantified in detail. The pressure dependences of the volumetric characteristics obtained are compared with the temperature dependent behavior of these quantities and with corresponding results for a natively unfolded polypeptide.


Assuntos
Nuclease do Micrococo/química , Água/química , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Nuclease do Micrococo/metabolismo , Simulação de Dinâmica Molecular , Pressão , Dobramento de Proteína , Temperatura
5.
J Phys Chem B ; 119(5): 1881-90, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25590869

RESUMO

We used molecular dynamics simulations of a typical monomeric protein, SNase, in combination with Voronoi-Delaunay tessellation to study and analyze the temperature dependence of the apparent volume, Vapp, of the solute. We show that the void volume, VB, created in the boundary region between solute and solvent, determines the temperature dependence of Vapp to a major extent. The less pronounced but still significant temperature dependence of the molecular volume of the solute, VM, is essentially the result of the expansivity of its internal voids, as the van der Waals contribution to VM is practically independent of temperature. Results for polypeptides of different chemical nature feature a similar temperature behavior, suggesting that the boundary/hydration contribution seems to be a universal part of the temperature dependence of Vapp. The results presented here shine new light on the discussion surrounding the physical basis for understanding and decomposing the volumetric properties of proteins and biomolecules in general.


Assuntos
Nuclease do Micrococo/química , Água/química , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Calorimetria , Humanos , Nuclease do Micrococo/metabolismo , Simulação de Dinâmica Molecular , Eletricidade Estática , Temperatura
6.
Biophys Chem ; 192: 1-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24912030

RESUMO

Recently a simple formalism was proposed for a quantitative analysis of interatomic voids inside a solute molecule and in the surrounding solvent. It is based on the Voronoi-Delaunay tessellation of structures, obtained in molecular simulations: successive Voronoi shells are constructed, starting from the interface between the solute molecule and the solvent, and continuing to the outside (into the solvent) as well as into the interior of the molecule. Similarly, successive Delaunay shells, consisting of Delaunay simplexes, can also be constructed. This technique can be applied to interpret volumetric data, obtained, for example, in studies of proteins in aqueous solution. In particular, it allows replacing qualitatively and descriptively introduced properties by strictly defined quantities, such as the thermal volume, by the boundary voids. The extension and the temperature behavior of the boundary region, its structure and composition are discussed in detail, using the example of a molecular dynamics model of an aqueous solution of the human amyloid polypeptide, hIAPP. We show that the impact of the solute on the local density of the solvent is short ranged, limited to the first Delaunay and the first Voronoi shell around the solute. The extra void volume, created in the boundary region between solute and solvent, determines the magnitude and the temperature dependence of the apparent volume of the solute molecule.


Assuntos
Substâncias Macromoleculares/química , Simulação de Dinâmica Molecular , Soluções
7.
J Phys Chem B ; 115(48): 14217-28, 2011 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21999345

RESUMO

The study of hydration, folding, and interaction of proteins by volumetric measurements has been promoted by recent advances in the development of highly sensitive instrumentations. However, the separation of the measured apparent volumes into contributions from the protein and the hydration water, V(app) = V(int) + ΔV, is still challenging, even with the detailed microscopic structural information from molecular simulations. By the examples of the amyloidogenic polypeptides hIAPP and Aß42 in aqueous solution, we analyze molecular dynamics simulation runs for different temperatures, using the Voronoi-Delaunay tessellation method. This method allows a parameter free determination of the intrinsic volume V(int) of complex solute molecules without any additional assumptions. For comparison, we also use fused sphere calculations, which deliver van der Waals and solute accessible surface volumes as special cases. The apparent volume V(app) of the solute molecules is calculated by different approaches, using either a traditional distance based selection of hydration water or the construction of sequential Voronoi shells. We find an astonishing coincidence with the predictions of a simple empirical approach, which is based on experimentally determined amino acid side chain contributions (Biophys. Chem.1999, 82, 35). The intrinsic volumes of the polypeptides are larger than their apparent volumes and also increase with temperature. This is due to a negative contribution of the hydration water ΔV to the apparent volume. The absolute value of this contribution is less than 10% of the intrinsic volume for both molecules and decreases with temperature. Essential volumetric differences between hydration water and bulk water are observed in the nearest neighborhood of the solute only, practically in the first two Delaunay sublayers of the first Voronoi shell. This also helps to understand the pressure dependence of the partial molar volumes of proteins.


Assuntos
Peptídeos beta-Amiloides/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química , Água/química , Temperatura
8.
J Chem Phys ; 133(14): 144702, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20950025

RESUMO

The grand canonical Monte Carlo method is used to simulate the adsorption isotherms of water molecules on different types of model soot particles. These soot models are constructed by first removing atoms from onion-fullerene structures in order to create randomly distributed pores inside the soot, and then performing molecular dynamics simulations, based on the reactive adaptive intermolecular reactive empirical bond order (AIREBO) description of the interaction between carbon atoms, to optimize the resulting structures. The obtained results clearly show that the main driving force of water adsorption on soot is the possibility of the formation of new water-water hydrogen bonds with the already adsorbed water molecules. The shape of the calculated water adsorption isotherms at 298 K strongly depends on the possible confinement of the water molecules in pores of the carbonaceous structure. We found that there are two important factors influencing the adsorption ability of soot. The first of these factors, dominating at low pressures, is the ability of the soot of accommodating the first adsorbed water molecules at strongly hydrophilic sites. The second factor concerns the size and shape of the pores, which should be such that the hydrogen bonding network of the water molecules filling them should be optimal. This second factor determines the adsorption properties at higher pressures.

9.
J Chem Phys ; 128(24): 244503, 2008 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-18601345

RESUMO

Computer simulation results are reported for a realistic polarizable potential model of water in the supercooled region. Three states, corresponding to the low density amorphous ice, high density amorphous ice, and very high density amorphous ice phases are chosen for the analyses. These states are located close to the liquid-liquid coexistence lines already shown to exist for the considered model. Thermodynamic and structural quantities are calculated, in order to characterize the properties of the three phases. The results point out the increasing relevance of the interstitial neighbors, which clearly appear in going from the low to the very high density amorphous phases. The interstitial neighbors are found to be, at the same time, also distant neighbors along the hydrogen bonded network of the molecules. The role of these interstitial neighbors has been discussed in connection with the interpretation of recent neutron scattering measurements. The structural properties of the systems are characterized by looking at the angular distribution of neighboring molecules, volume and face area distribution of the Voronoi polyhedra, and order parameters. The cumulative analysis of all the corresponding results confirms the assumption that a close similarity between the structural arrangement of molecules in the three explored amorphous phases and that of the ice polymorphs I(h), III, and VI exists.

10.
J Phys Chem B ; 109(34): 16490-502, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16853097

RESUMO

The properties of the interatomic voids present in fully hydrated dimyristoylphosphatidylcholine (DMPC)-cholesterol mixed membranes of different compositions are analyzed in detail using a generalized variant of the Voronoi-Delaunay method on the basis of computer simulation results. The systems investigated are chosen from both sides of the DMPC-cholesterol miscibility gap; the pure DMPC bilayer has also been included in the analysis as a reference system. The results obtained show that the empty space is organized in a more compact way, forming larger voids in the presence than in the absence of cholesterol. The voids located in the region of the rigid cholesterol rings become, on average, less spherical, oriented more parallel with the membrane normal axis with increasing cholesterol concentration, whereas an opposite effect of cholesterol is observed in the middle of the membrane among the chain terminal methyl groups. In general, the preferential orientation of the voids is found to strongly correlate with that of the molecules in the hydrocarbon phase of the membranes. The membranes are found to contain rather large voids, the volume of which can be an order of magnitude larger than the largest spherical cavities present in the systems. These voids are elongated or branching channels rather than big empty holes. The voids located among the DMPC and cholesterol molecules are lying preferably parallel with the membrane normal axis. The existence of such empty channels can be of great importance in the cross-membrane permeation of small, uncharged penetrants, in particular, of polar molecules.


Assuntos
Colesterol/química , Dimiristoilfosfatidilcolina/química , Lipossomos/química , Fosfolipídeos/química , Modelos Moleculares , Conformação Molecular , Método de Monte Carlo , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...